Main Valve (Mark 5108 & Mark 6127) # Installation, Operating and Maintenance Instructions # GENERAL DESCRIPTION The main valve of the Mark 5108 and Mark 6127 is a hydraulically-operated, diaphragm-actuated valve. It is available in either a globe or angle configuration. The diaphragm is nylon-fabric bonded with synthetic rubber and forms a sealed chamber in the upper portion of the valve, separating operating pressure from line pressure. An elastomeric seat disc forms a tight seal with the valve seat when pressure is applied above the diaphragm. # FUNCTIONAL DESCRIPTION Because this valve is a hydraulically operated valve, it requires a minimum line pressure of approximately 5 psig in order to function. The valve functions on a simple principle of pressure differential. The line pressure at the inlet of the valve is bypassed through the pilot control piping to the diaphragm chamber of the valve. This pressure, together with the valve spring, works against the pressure under the valve seat. Because the effective area of the diaphragm is greater than that of the seat, the valve is held tightly closed. As the controlling pilot(s) allow the pressure to bleed off the diaphragm chamber, the two opposing pressures begin to balance and the valve will begin to open. The valve can be used to perform a simple on-off function, or with the proper pilot system, a modulating, or regulating function. In cases where the line fluid is unusually dirty, or is otherwise unsuitable for operating he valve, an independent operating pressure source may be employed. The pressure available from such a source must be equal to, or greater than, line pressure. ### **NSTALLATION** In order to insure safe, accurate and efficient operation of the Jordan piloted regulator, the following list of checkpoints and procedures should be followed when installing the valve. - Make a careful visual inspection of the valve to insure that there has been no damage to the external piping, fittings or controls. Check that all fittings are tight. - 2. Thoroughly flush all interconnecting piping of chips, scale and foreign matter prior to mounting the valve. - 3. Install the valve in the line according to the flow arrow on the inlet flange. The arrow should point downstream. - 4. Allow sufficient room around the valve for ease of adjustment and maintenance service. # MAIN VALVE (MARK 5108 & MARK 6127) In addition, it is highly recommended that: - 1. Isolation valves (e.g., gate or butterfly) be installed on the inlet and discharge sides of the valve to facilitate isolating the valve for maintenance. - 2. Pressure gauges be installed at the inlet and outlet sides of the valve to provide monitoring of the valve during initial start-up and during operation. The body side ports, if unused by the pilot system, provide a convenient connection for the gauges. - 3. All valves larger than 6" be installed horizontally, i.e., with the bonnet pointed up, for ease of adjustment and maintenance servicing. ## **M**AINTENANCE The Jordan Mark 5108 and 6127 Series requires no lubrication and a minimum of maintenance. However, a periodic inspection should be established to determine how the fluid being handled is affecting the efficiency of the valve. In a water system, for example, the fluid velocity as well as the substances occurring in natural waters, such as dissolved minerals and suspended particles, vary in every installation. The effect of these actions or substances must be determined by inspection. It is recommended than an annual inspection, which includes examination of the valve interior, be conducted. Particular attention should be paid to the elastomeric parts, i.e., the diaphragm and seat disc. Any obviously worn parts should be replaced. # REPAIR PROCEDURES In the event of malfunction of the Jordan Valve, troubleshooting should be conducted according to the procedures outlined for the specific model of valve. Then, if those steps indicate a problem with the main valve, this section will outline the procedures necessary to correct the problem. Problems with the main valve can be classed in three basic categories: - 1. VALVE FAILS TO OPEN - A.) Diaphragm damaged*- See Procedure A - B.) Stem binding See Procedure B - C.) Object lodged in valve See Procedure B - 2. VALVE FAILS TO CLOSE - A.) Diaphragm damaged*- See Procedure A - B.) Stem binding See Procedure B - C.) Object lodged in valve See Procedure B - 3. VALVE OPENS AND CLOSES BUT LEAKS WHEN CLOSED - A.) Seat disc damaged See Procedure C - B.) Seat ring damaged See Procedure D *A diaphragm failure can prevent the valve from either opening or closing, depending on the flow direction. Most water service valves flow "under the seat", in which case a diaphragm failure will keep the valve from closing. On the other hand, most fuel service valves flow "over the seat", in which case a diaphragm failure will keep the valve from opening. To determine which you have, examine the bridge mark cast into the side of the valve body, then compare it with the figures below. FLOW OVER SEAT DIAPHRAGM FAILURE = VALVE FAILS TO OPEN #### Procedure A: Diaphragm Replacement - 1. Isolate the valve from the system by closing upstream and downstream block valves. - 2. Loosen one of the tubing connections on the bonnet. Allow any residual pressure to bleed off. - 3. Remove all tubing connected to the bonnet. - 4. Remove the bonnet nuts. - 5. Remove the bonnet. If the bonnet sticks in place, it may be loosened by rapping sharply around its edge with a **rubber-headed** mallet. **NOTE:** 8" and larger valves are equipped with eye bolts through which a chain can be fastened to aid in lifting the bonnet. - 6. Remove the spring. - 7. Remove the diaphragm plate capscrews and the diaphragm plate. - 8. Remove the old diaphragm. - Making sure the dowel pin holes are in the proper location, place the new diaphragm over the studs and press down until it is flat against the body and spool. - 10. Replace the diaphragm plate and the diaphragm plate capscrews. - 11. Tighten all diaphragm plate capscrews snugly. - 12. Replace the spring. - 13. Replace the bonnet and reinstall the bonnet nuts. - 14. Tighten the bonnet nuts snugly using a criss-cross tightening pattern. - 15. Reinstall the control tubing. - 16. Reopen the upstream and downstream block valves. - 17. Before placing the valve back in service, perform the air bleed procedure described in the first section of the manual. #### **Procedure B: Correction of Binding Stem** - 1. Perform Steps 1 thru 6 of Procedure A, above. - 2. Remove the spool assembly from the valve. **NOTE:**On smaller valves, this can be accomplished simply by grasping the stem and pulling upward. Valves 6" and larger have the top of the stem threaded to accept an eyebolt to aid in lifting the spool out of the body. 6" thru 12" valves are threaded 3/8-16. 14" and 16" valves are threaded 5/8-11. - Carefully examine both ends of the stem for deep scratches, scoring or buildup of mineral deposits. Polish the stem if necessary using a fine grade of emery cloth. - 4. Similarly, examine and polish the upper bushing (in the bonnet) and the lower guide (in the seat ring). - 5. Reinstall the spool assembly. - 6. Reassemble the valve, following Steps 12 thru 17 in Procedure A. #### **Procedure C: Seat Disc Replacement** - 1. Perform Steps 1 and 2 of Procedure B, above. - 2. With the spool assembly removed from the body, remove the seat retainer screws. - 3. Slide the seat retainer off the lower end of the stem. - 4. Remove the seat disc from its groove in the spool. **NOTE:** The seat disc may fit quite tightly in the groove. If necessary, it may be pried out using a thin-bladed screwdriver or similar tool. - 5. Install the new seat disc in the groove. - 6. Reinstall the seat retainer and tighten the seat retainer screws. - 7. Reassemble the valve, following Steps 5 and 6 of Procedure B. #### **Procedure D: Seat Ring Replacement** NOTE: It is rare for a seat ring to require replacement. Minor nicks and scratches in the seating surface can usually be smoothed out with emery cloth. - 1. Perform Steps 1 and 2 of Procedure B, above. - 2. If you are working on a 4" or smaller valve, follow Steps 3 thru 9, below. - 3. If you are working on a 6" or larger valve, follow Steps 10 thru 16, below. - 4. Seat rings in valves 4" and smaller are threaded into the valve body. To remove, you will need a special seat ring tool. You may fabricate one using standard pipe as shown in the sketch below, or one may be purchased from Jordan Valve. - 5. Using the seat ring tool, unthread the seat ring from the body. - 6. Remove the old O-ring from the counterbore in the body. - 7. Install the new O-ring in the counterbore. - 8. Using the seat ring tool, install the new seat ring. - Reassemble the valve, following Steps 5 & 6 of Procedure B. - 10. Seat rings in valves 6" and larger are bolted into the body with socket head capscrews. In addition you will note that the seat ring is equipped with additional threaded holes that may be used for "jacking" the seat ring out of the body. - 11. Remove the socket head capscrews. - 12. Remove the old seat ring from the body by temporarily installing two or more of the capscrews in the "jacking" holes. - 13. Install a new O-ring in the groove of the new seat ring. Lubricate the O-ring and outer seat ring wall with Vaseline® or similar lubricant. - 14. Install the new seat ring in the body, making sure that the capscew holes line up. - 15. Replace and tighten all the capscrews. - 16. Reassemble the valve, following Steps 5 and 6 of Procedure B. | | "A" | "B" | "C" | "D" | "E" | "F" | | |------------|-----------|-------------|------------|-----------|--------------|--------------|--| | VALVE SIZE | PIPE SIZE | MIN. LENGTH | SLOT WIDTH | SLOTDEPTH | NO. OF SLOTS | SLOT SPACING | | | 1-1/4" | 3/4 * | 6* | 3/8" | 3/8" | 2 | 180° | | | 1-1/2" | 3/4* | 6" | 3/8" | 3/8" | 2 | 180° | | | 2* | 1-1/2" | 7" | 3/8" | 3/8" | 2 | 180° | | | 2-1/2" | 2* | 8* | 1/2* | 1/2" | 3 | 120° | | | 3* | 2-1/2* | 9* | 5/8" | 5/8" | 2 | 180° | | | 4" | 3* | 10" | 5/8" | 5/8* | 2 | 180° | | # MARK 5108 & 6127 SERIES MAIN VALVE DIMENSIONS | DIM | ANSI
Class | Valve Size | | | | | | | | | | | | | |-----|---------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | | | 1 1/4 | 1 1/2 | 2 | 2 1/2 | 3 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 24 | | А | SE | 8.75 | 8.75 | 9.88 | 10.50 | 13.00 | | | | | | | | | | | 150 | 8.50 | 8.50 | 9.38 | 10.50 | 12.00 | 15.00 | 17.75 | 25.38 | 29.75 | 34.00 | 39.00 | 40.38 | 62.00 | | | 300 | 8.75 | 8.75 | 9.88 | 11.12 | 12.75 | 15.62 | 18.62 | 26.38 | 31.12 | 35.50 | 40.50 | 42.00 | 63.75 | | | SE | 1.44 | 1.44 | 1.69 | 1.88 | 2.25 | | | | | | | | | | В | 150 | 2.31 | 2.50 | 3.00 | 3.50 | 3.75 | 4.50 | 5.50 | 6.75 | 8.00 | 9.50 | 10.62 | 11.75 | 16.00 | | | 300 | 2.62 | 3.06 | 3.25 | 3.75 | 4.50 | 5.50 | 6.25 | 7.50 | 8.75 | 10.25 | 11.50 | 12.75 | 18.00 | | С | SE | 4.38 | 4.38 | 4.75 | 6.00 | 6.50 | | | | | | | | | | | 150 | 4.25 | 4.25 | 4.75 | 6.00 | 6.00 | 7.50 | 10.00 | 12.69 | 14.88 | 17.00 | | 20.81 | | | | 300 | 4.38 | 4.38 | 5.00 | 6.38 | 6.38 | 7.81 | 10.50 | 13.19 | 15.56 | 17.75 | | 21.62 | | | | SE | 3.12 | 3.12 | 3.88 | 4.00 | 4.50 | | | | | | | | | | D | 150 | 3.00 | 3.00 | 3.88 | 4.00 | 4.00 | 5.50 | 6.00 | 8.00 | 11.38 | 11.00 | | 15.69 | | | | 300 | 3.25 | 3.25 | 4.12 | 4.38 | 4.38 | 5.81 | 6.50 | 8.50 | 12.06 | 11.75 | | 16.50 | | | E | ALL | 6.00 | 6.00 | 6.00 | 7.00 | 6.50 | 7.92 | 10.00 | 11.88 | 15.38 | 17.00 | 18.00 | 19.00 | 27.00 | | F | ALL | 3.88 | 3.88 | 3.88 | 3.88 | 3.88 | 3.88 | 3.88 | 6.38 | 6.38 | 6.38 | 6.38 | 6.38 | 8.00 | | G | ALL | 6.00 | 6.00 | 6.75 | 7.69 | 8.75 | 11.75 | 14.00 | 21.00 | 24.50 | 28.00 | 31.25 | 34.50 | 52.00 | | Н | ALL | 10.00 | 10.00 | 11.00 | 11.00 | 11.00 | 12.00 | 13.00 | 14.00 | 17.00 | 18.00 | 20.00 | 20.00 | 28.50 |